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Motivation and Introduction

The emergence of Large Language Models (LLMs) brings broad concern about the malicious
usage of machine-generated text (MGT). Effective MGT detectors are urgently needed.

Defects on existing detectors:

= Treat input documents as flat sequences of tokens while ignoring high-level linguistic
representation of text structure
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Supervised Contrastive Learning

Experiment and Analysis on Comparison, Ablation and Robustness

We conduct our main experiments on two public datasets and two self-constructed GPT-3.5
datasets[g], against seven baselines and SOTA. Also, an ablation study and robustness test are
implemented. More additional experiments are in the paper. Here are some key findings:

= CoCo surpasses the state-of-the-art methods in MGT detection in both settings
= GROVER Dataset is the hardest to detect while GPT-3.5 datasets are surprisingly easy
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Coherence Modeling based on Centering Theory!!!

“Coherence of texts could be modeled by sentence interaction around center entities.” We
build a coherence graph, treat entities as nodes and co-occurrence relationship of entities as
edges.

https.//github.com/YichenZW/Coh-MGT-Detection
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Toward Low Resource Scenario: Contrastive Learning

To instance compactness and class separability in low-resource settings, we utilize MOCO as
backbone and come up with an improved contrastive loss (ICL) for dynamically adjusting the
weight of negative pair similarity according to the hardness of negative samples.
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where P(i) is the positive set in which data has the same label with ¢; and N () is the negative
set in which data has a different label from ¢;. Dy, is the key module representations and Dy, is
the query module representations.
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Preliminary Explore on the Detectable Feature in GPT-3.5 Dataset

We probe the statistical interpretation behind the GPT-3.5 dataset and try to answer the
question: Why the MGTs by GPT-3.5 are relatively easy to detect? We count the N-gram coverage
of the supporters in Transformers-Interpret and the token coverage from the Statistic Cue.
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= More consecutive spans of tokens act as an indicator for MGT than HW'T
= No existing vulnerability in our dataset since trade-off between productivity and coverage
= The Easy-to-detect nature of GPT-3.5 texts might originate from language patterns
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