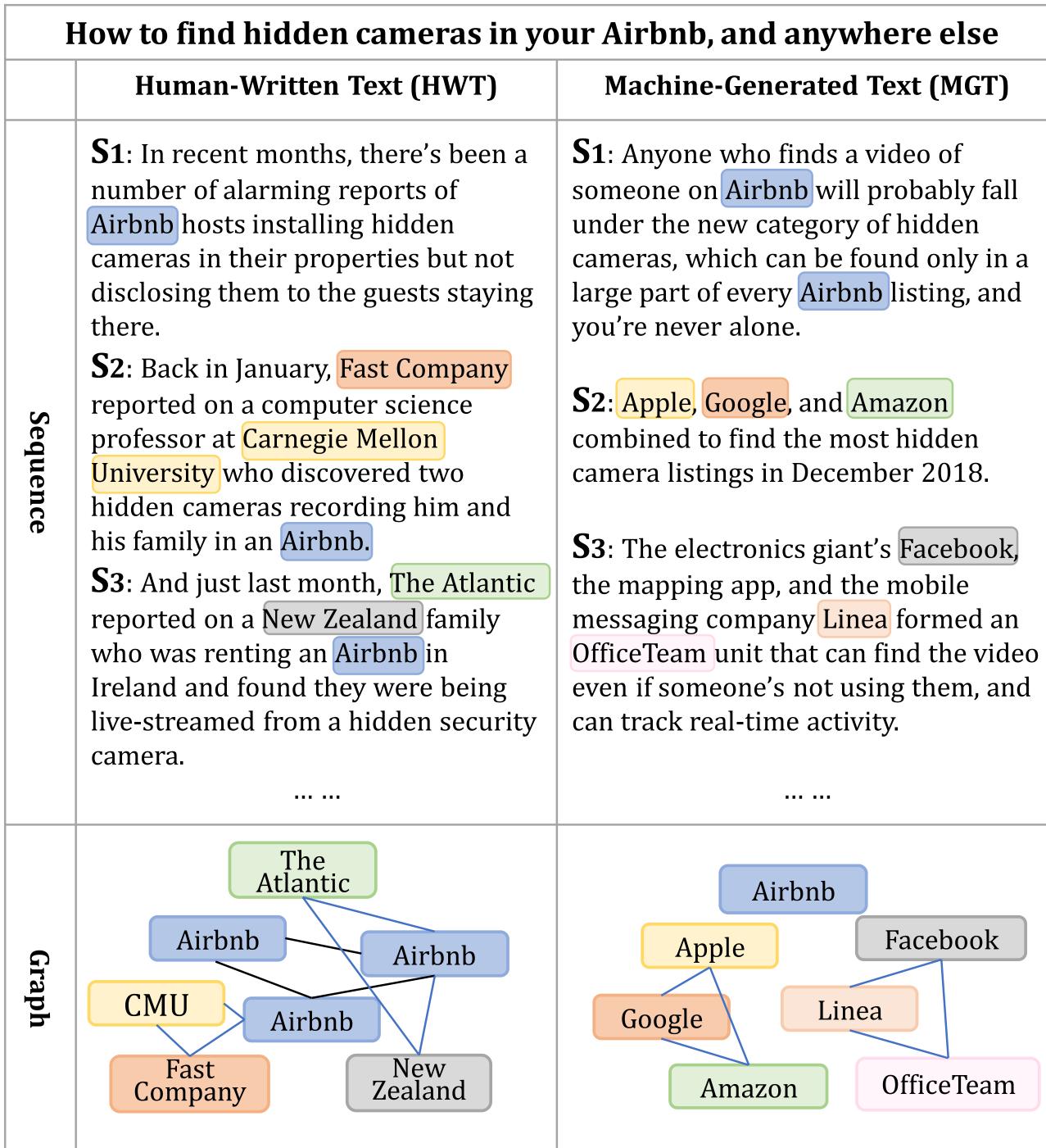
CoCo: Coherence-Enhanced Machine-Generated Text Detection Under Low Resource With Contrastive Learning

Motivation and Introduction

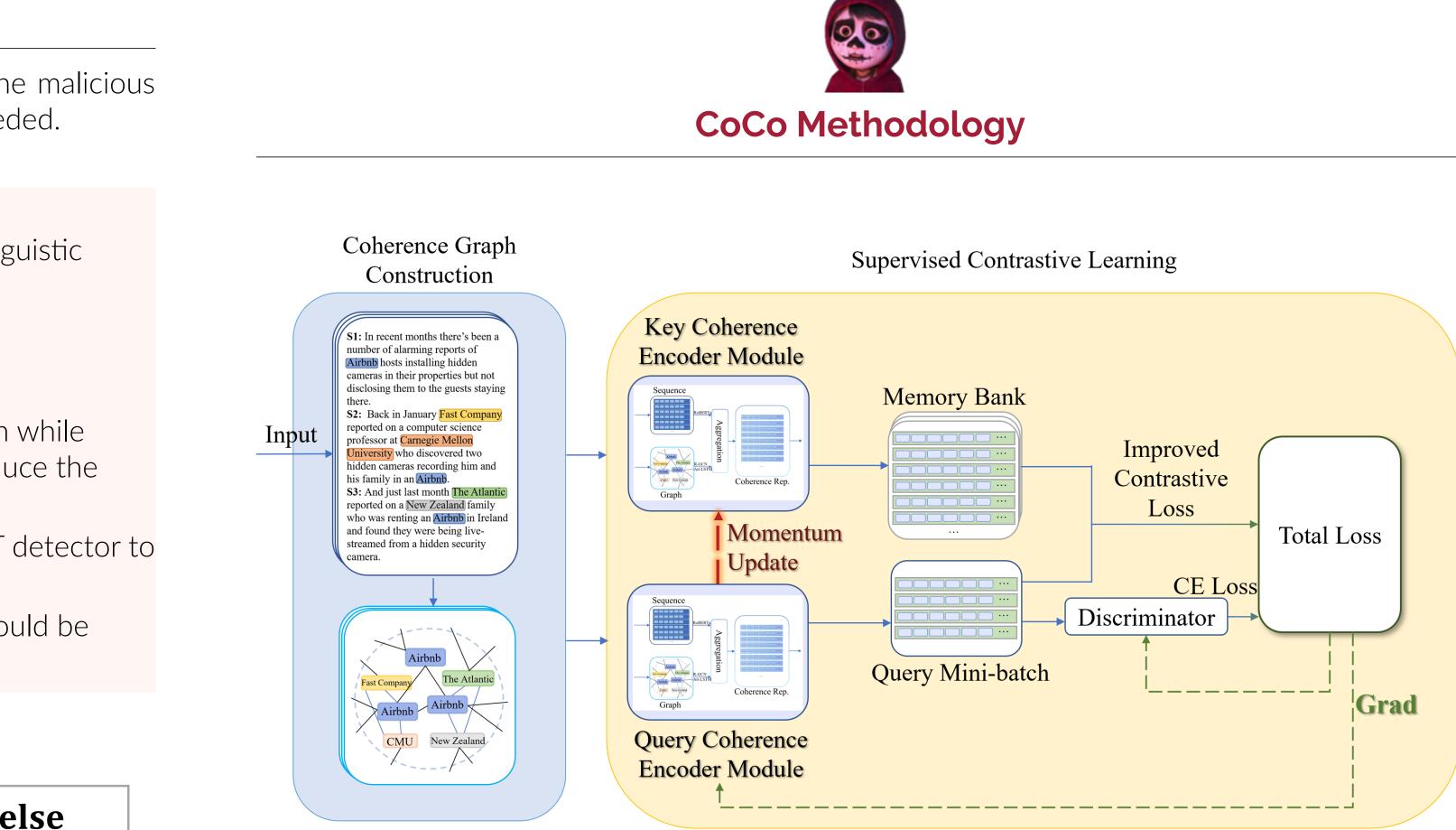

The emergence of Large Language Models (LLMs) brings broad concern about the malicious usage of machine-generated text (MGT). Effective MGT detectors are urgently needed.

Defects on existing detectors:

- Treat input documents as flat sequences of tokens while ignoring high-level linguistic representation of text structure
- Performance constrained by the amount of available annotated data

Our contributions:

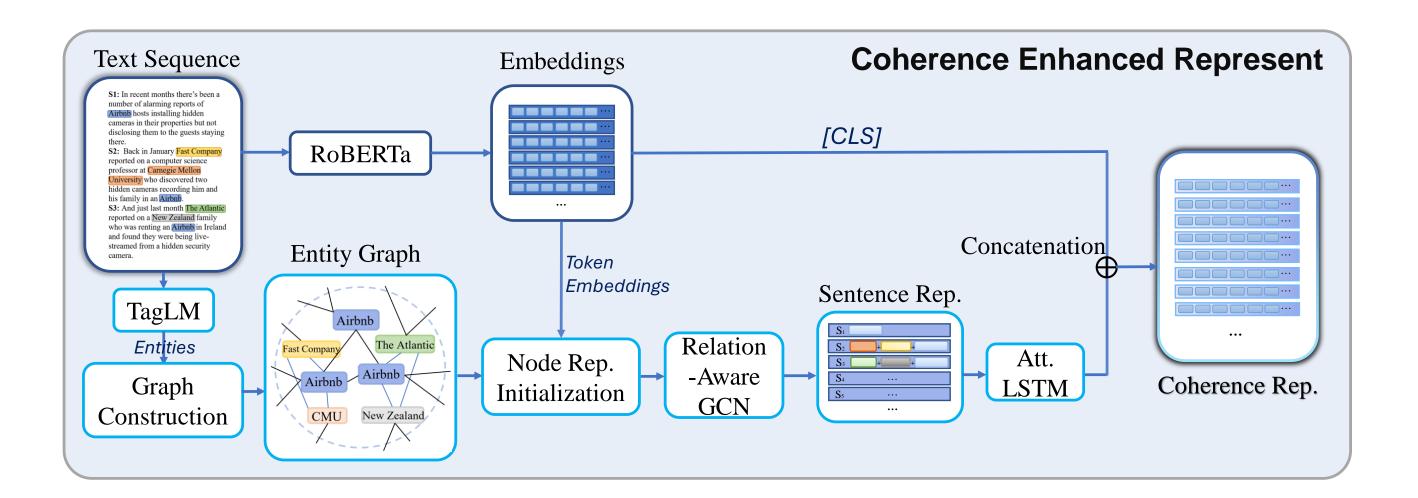
- We model the text coherence with entity consistency and sentence interaction while statistically proving its distinctiveness in MGT detection, and we further introduce the linguistic feature at the input stage
- We introduce contrastive learning and improved contrastive loss into the MGT detector to alleviate data dependence
- We surprisingly find that MGTs originated from up-to-date language models could be easier to detect than those from previous models in our experiments



Coherence Modeling based on Centering Theory^[1]

"Coherence of texts could be modeled by sentence interaction around center entities." We build a coherence graph, treat entities as nodes and co-occurrence relationship of entities as edges.

¹Xi'an Jiaotong University


²Queen Mary University of London

CoCo consists of two complements: **Coherence Graph Construction** and **Contrastive Learning**.

Encoder Design: Coherence Graph Construction

We propose an innovative coherence encoder module (CEM), which is utilized to integrate coherence information into a semantic representation of text by propagating and aggregating information from different granularity via graph, to encode a coherence enhanced representation.

Toward Low Resource Scenario: Contrastive Learning

To instance compactness and class separability in low-resource settings, we utilize $MOCO^{[2]}$ as backbone and come up with an improved contrastive loss (ICL) for dynamically adjusting the weight of negative pair similarity according to the hardness of negative samples.

$$\mathcal{L}_{\text{ICL}} = \sum_{j=1}^{M} \mathbf{1}_{y_i = y_j} \log \frac{S_{ij}}{\sum_{p \in \mathcal{P}(i)} S_{ip} + \sum_{q}}$$
$$S_{ij} = \exp(D_q^i D_k^j / \tau), rf_{ij} = \beta \frac{D_q^i D_q^j}{\operatorname{avg}(D_q^i D_q^j)}$$

where $\mathcal{P}(i)$ is the positive set in which data has the same label with q_i and $\mathcal{N}(i)$ is the negative set in which data has a different label from q_i . D_k is the key module representations and D_q is the query module representations.

Xiaoming Liu^{1,†} Zhaohan Zhang^{1,2,†} Yichen Wang^{1,†} Hang Pu¹ Yu Lan¹ Chao Shen¹

[†]Equal Contribution

 $_{n\in\mathcal{N}(i)}rf_{in}S_{in}$ (1) $^{\cdot}D_{k}^{n}$ $\frac{1}{2} \frac{1}{|\mathcal{N}(i)|}$

Experiment and Analysis on Comparison, Ablation and Robustness

We conduct our main experiments on two public datasets and two self-constructed GPT-3.5 datasets^[3], against seven baselines and SOTA. Also, an ablation study and robustness test are implemented. More additional experiments are in the paper. Here are some key findings:

- CoCo shows comparable robustness to perturbations to some extent

Dataset	OVER	R			GPT-2						
Size	Limited Dataset	Full Dataset				Limited Dataset (500 examples)		Full Dataset			
Metric	ACC	F1	ACC			F1	ACC	F1	ACC	F 1	
GPT2	0.5747 ± 0.0217	0.4394 ± 0.0346	$0.8274\pm0.$	0091	0.8003	± 0.0141	0.5380 ± 0.0067	0.4734 ± 0.0182	0.8913 ± 0.0066	0.8839 ± 0.0078	
XLNet	0.5660 ± 0.0265	0.4707 ± 0.0402	$0.8156 \pm 0.$	0079	0.7493	± 0.0073	0.6551 ± 0.0083	0.5715 ± 0.0095	0.9091 ± 0.0091	0.9027 ± 0.0111	
RoBERTa	0.6621 ± 0.0133	0.5895 ± 0.0231	$0.8772 \pm 0.$	0029	0.8171	± 0.0048	0.8223 ± 0.0088	0.7978 ± 0.0085	0.9402 ± 0.0039	0.9384 ± 0.0044	
DualCL	0.5835 ± 0.0857	0.4628 ± 0.1076	$0.7574 \pm 0.$	0855	0.6388	± 0.1300	0.6039 ± 0.1367	0.5435 ± 0.0903	0.8023 ± 0.1120	0.8046 ± 0.1530	
CE+SCL	0.6870 ± 0.0142	0.5961 ± 0.0197	$0.8782\pm0.$	0044	0.8202	± 0.0057	0.8355 ± 0.0046	0.8127 ± 0.0067	0.9408 ± 0.0006	0.9390 ± 0.0009	
GLTR	0.3370	0.4935	0.6040		0.	5182	0.7755	0.7639	0.7784	0.7691	
DetectGPT	0.5910	0.4258	0.6142		0.	5018	0.7941	0.6982	0.7939	0.7002	
CoCo	$\textbf{0.6993} \pm \textbf{0.0119}$	$\textbf{0.6125} \pm \textbf{0.0159}$	$0.8826\pm0.$	0018	0.8265	\pm 0.0036	$\textbf{0.8530} \pm \textbf{0.0019}$	$\textbf{0.8410} \pm \textbf{0.0018}$	$\textbf{0.9457} \pm \textbf{0.0004}$	$\textbf{0.9452} \pm \textbf{0.0004}$	
Dataset		GPT-3.5	Unmixed				GPT-3.5 Mixed				
Size	Limited Dataset (500 examples) Full Dataset					Limited Dataset	(500 examples)	Full D	ataset		
Metric	ACC	F1	ACC			F1	ACC	F1	ACC	F1	
GPT2	0.9023 ± 0.0095	0.8920 ± 0.0073	$0.9917 \pm 0.$	0056	0.9905	± 0.0042	0.8898 ± 0.0094	0.8914 ± 0.0084	0.9910 ± 0.0046	0.9910 ± 0.0033	
XLNet	0.9107 ± 0.0068	0.9037 ± 0.0064	$0.9620 \pm 0.$	0043	0.9634	± 0.0068	0.8925 ± 0.0106	0.8922 ± 0.0089	0.9513 ± 0.0052	0.9505 ± 0.0039	
RoBERTa	0.9670 ± 0.0084	0.9681 ± 0.0077	$0.9928\pm0.$	$.9928\pm0.0035$		± 0.0040	0.9565 ± 0.0103	0.9583 ± 0.0092	0.9923 ± 0.0017	0.9901 ± 0.0024	
CE+SCL	0.9823 ± 0.0053	0.9703 ± 0.0070	$0.9944 \pm 0.$	0.9944 ± 0.0023		± 0.0031	0.9628 ± 0.0077	0.9686 ± 0.0062	0.9932 ± 0.0017	0.9905 ± 0.0038	
GLTR	0.9255	0.9287	0.9350		0.	9358	0.9175	0.9181	0.9210	0.9212	
DetectGPT	0.9220	0.8744	0.9245	0.9245		8991	0.8980	0.8814	0.9113	0.9041	
CoCo	$\textbf{0.9889} \pm \textbf{0.0044}$	$\textbf{0.9791} \pm \textbf{0.0062}$	$\textbf{0.9972}\pm \textbf{0.}$	0015	0.9957	\pm 0.0020	$\textbf{0.9701} \pm \textbf{0.0069}$	$\textbf{0.9735} \pm \textbf{0.0086}$	$\textbf{0.9932} \pm \textbf{0.0019}$	$\textbf{0.9937} \pm \textbf{0.0028}$	
	_										
Model			ACC	ł	71	Mode	I Ro	BERTa	C	oCo	
COCO (Plain)			0.7697	0.6	428	Metrie	e Acc	F1	Acc	F1	
						Origina	al 0.6635	0.5901	0.6993	0.6125	
COCO (Sentence Nodes)			0.7733	0.6	379	Delete	e 0.5736 (-0.0899) 0.5545 (-0.0356)	0.6363 (-0.0630)	0.5703 (-0.0422)	
COCO (Coherence)			0.7777	0.6	463	Repea	t 0.6320 (-0.0315) 0.5743 (-0.0158)	0.6732 (-0.0261)	0.6004 (-0.0121)	
COCO (Coherence+LSTM)			0.7787	0.6	471	Inser				0.4970 (-0.1155)	
COCO (Coherence+LSTM+SCL)			0.7827	0.6	609			, , ,	· · ·	. ,	
CoCo) (Coherence+L	STM+SCL)	0.7627	0.0		Replac	e 0.5554 (-0.1081) 0.4814 (-0.1087)	0.6367 (-0.0626)	0.5023 (-0.1102)	

Preliminary Explore on the Detectable Feature in GPT-3.5 Dataset

We probe the statistical interpretation behind the GPT-3.5 dataset and try to answer the question: Why the MGTs by GPT-3.5 are relatively easy to detect? We count the N-gram coverage of the supporters in Transformers-Interpret and the token coverage from the Statistic Cue.

N-gram Coverage	MGT	HWT	Token	Productivity	Coverage	
γ_1	0.6659	0.6377		0.6923	0.3126	
γ_2	0.4250	0.3630	according			
γ_3	0.2883	0.2076	where	0.6842	0.1998	
γ_4	0.2019	0.1372	thou	0.6316	0.3837	
γ_5	0.1425	0.0935	they	0.0310	0.3637	

• More consecutive spans of tokens act as an indicator for MGT than HWT • No existing vulnerability in our dataset since trade-off between productivity and coverage

References

[1] Grosz B J, Sidner C L. Attention, intentions, and the structure of discourse[J]. Computational linguistics, 1986.

[2] He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 9729-9738.

[3] CoCo GPT-3.5 Machine-Generated Text Datasets, https://huggingface.co/datasets/ZachW/MGTDetect_CoCo

CoCo surpasses the state-of-the-art methods in MGT detection in both settings • GROVER Dataset is the hardest to detect while GPT-3.5 datasets are surprisingly easy • Coherence graph and contrastive learning module both contribute orthogonally

The Easy-to-detect nature of GPT-3.5 texts might originate from language patterns